

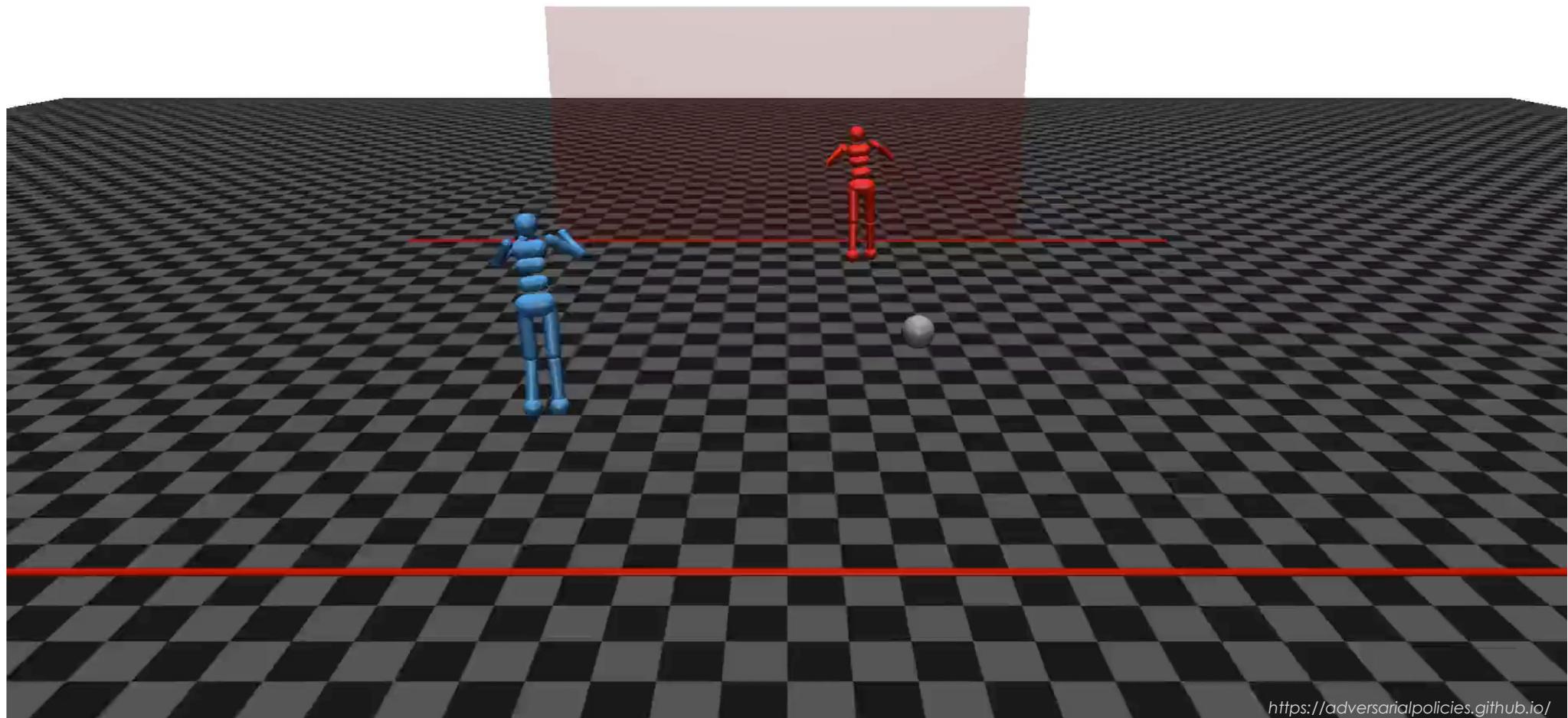
DATA SCIENCE
INSTITUTE®
AMERICAN COLLEGE OF RADIOLOGY

Brittleness of AI Models

Woojin Kim, MD

Disclosure

- Independent Contractor Consultant,
Nuance Communications
- Advisory Board, Braid Health
- Advisory Board, Inference Analytics
- Advisory Board, Luxonic



DATA SCIENCE INSTITUTE®
AMERICAN COLLEGE OF RADIOLOGY

Opponent = 0
Normal (ZooO2)

Ties = 0

Victim = 0
Normal (ZooV2)

Opponent = 0
Adversary (Adv2)

Ties = 0

Victim = 0
Normal (ZooV2)

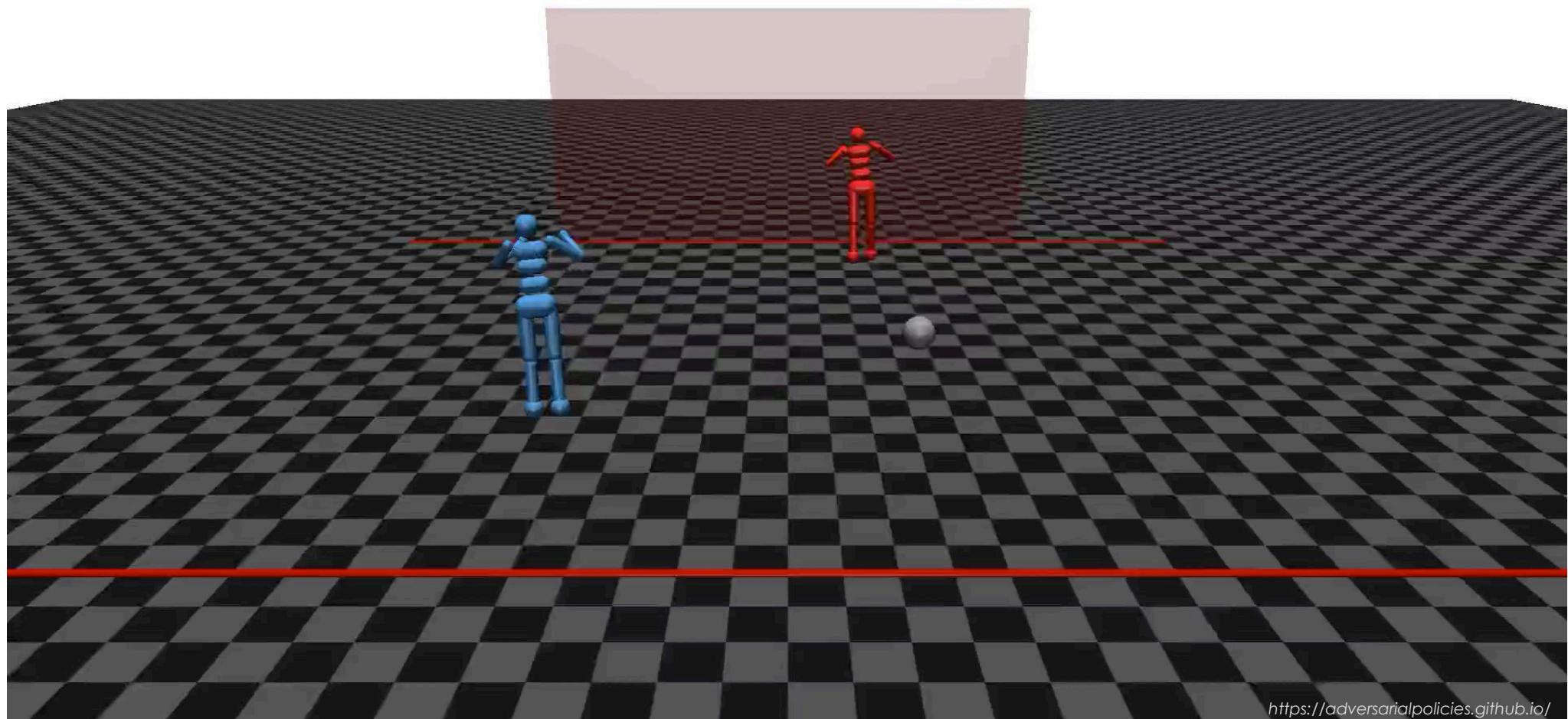


Photo by Herbert Goetsch on Unsplash

JASON PONTIN

IDEAS 02.02.2018 08:00 AM

Greedy, Brittle, Opaque, and Shallow: The Downsides to Deep Learning

We've been promised a revolution in how and why nearly everything happens. But the limits of modern artificial intelligence are closer than we think.

Forbes

1,629 views | Jun 24, 2019, 04:08pm EDT

We Must Recognize Just How Brittle And Unpredictable Today's Correlative Deep Learning AI Is

Kalev Leetaru Contributor

AI & Big Data

I write about the broad intersection of data and society.

E&T
ENGINEERING
AND TECHNOLOGY

Menu

By Hilary Lamb

Published Monday, March 9, 2020

1,629 views | Jun 24, 2019, 04:08pm EDT

We Must Recognize Just How Brittle And Unpredictable Today's Correlative Deep Learning AI Is

Kalev Leetaru Contributor

AI & Big Data

I write about the broad intersection of data and society.

“

Yet few companies fully understand just how **brittle** and unpredictable today's correlative deep learning AI is and how its moments of astonishingly human-like accuracy are matched by catastrophic failure at the most unexpected moments.

1,629 views | Jun 24, 2019, 04:08pm EDT

We Must Recognize Just How Brittle And Unpredictable Today's Correlative Deep Learning AI Is

Kalev Leetaru Contributor

AI & Big Data

I write about the broad intersection of data and society.

Yet few companies fully understand just how **brittle** and unpredictable today's correlative deep learning AI is and how its moments of astonishingly human-like accuracy are matched by catastrophic failure at the most unexpected moments. For AI to succeed companies must learn to distinguish hype from reality and understand the ways in which AI's **brittleness** and unpredictability may adversely affect their businesses.

Slight Street Sign Modifications Can Completely Fool Machine Learning Algorithms

By [Evan Ackerman](#)

Posted 4 Aug 2017 | 18:00 GMT

Images: [Evtimov et al](#)

Camouflage graffiti and art stickers cause a neural network to misclassify stop signs as speed limit 45 signs or yield signs.

NEWS FEATURE · 09 OCTOBER 2019

Why deep-learning AIs are so easy to fool

Artificial-intelligence researchers are trying to fix the flaws of neural networks.

Douglas Heaven

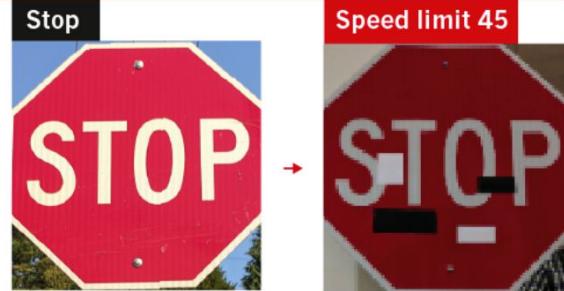
DNNs are fundamentally **brittle**: brilliant at what they do until, taken into unfamiliar territory, they break in unpredictable ways.

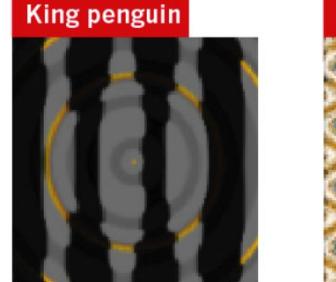
NEWS FEATURE · 14 APRIL 2019

Why deep learning AI can be easy to fool

Artificial-intelligence researchers are starting to understand the limits of neural networks.

Douglas Heaven


Subscribe


FOOLING THE AI

Deep neural networks (DNNs) are brilliant at image recognition — but they can be easily hacked.


These stickers made an artificial-intelligence system read this stop sign as 'speed limit 45'.

Scientists have evolved images that look like abstract patterns — but which DNNs see as familiar objects.

King penguin

Starfish

©nature

Sources: Stop sign: Ref. 1; Penguin: Ref. 5

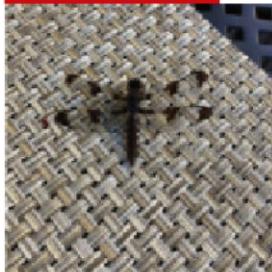
<https://www.nature.com/articles/d41586-019-03013-5>

LATEST TRICKS

Rotating objects in an image confuses DNNs, probably because they are too different from the types of image used to train the network.

Stop

Dumb-bell



Racket

Even natural images can fool a DNN, because it might focus on the picture's colour, texture or background rather than picking out the salient features a human would recognize.

Manhole cover

Pretzel

 Share Image

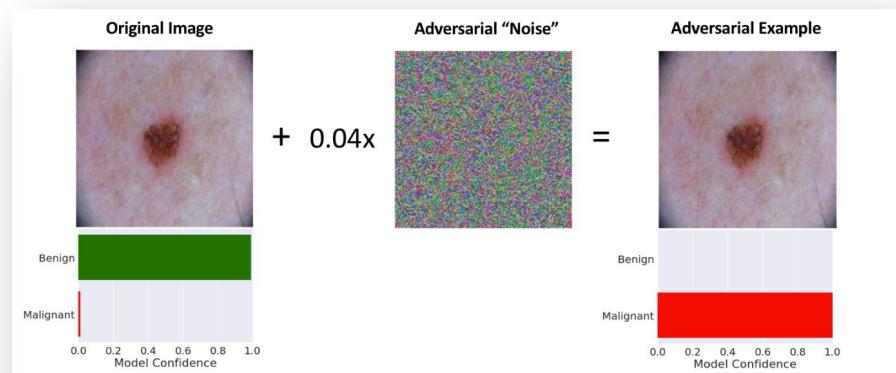
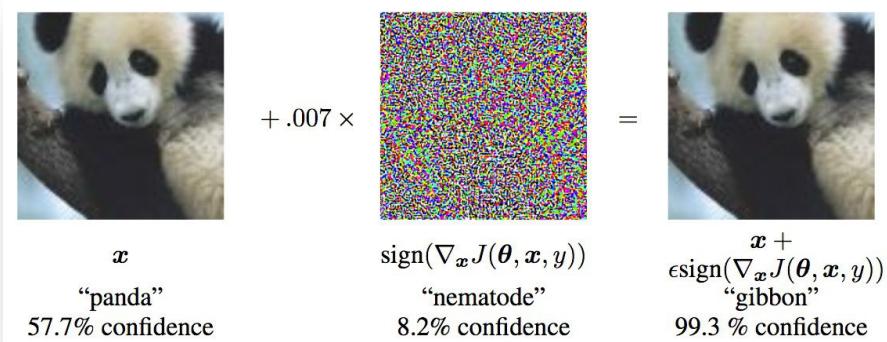
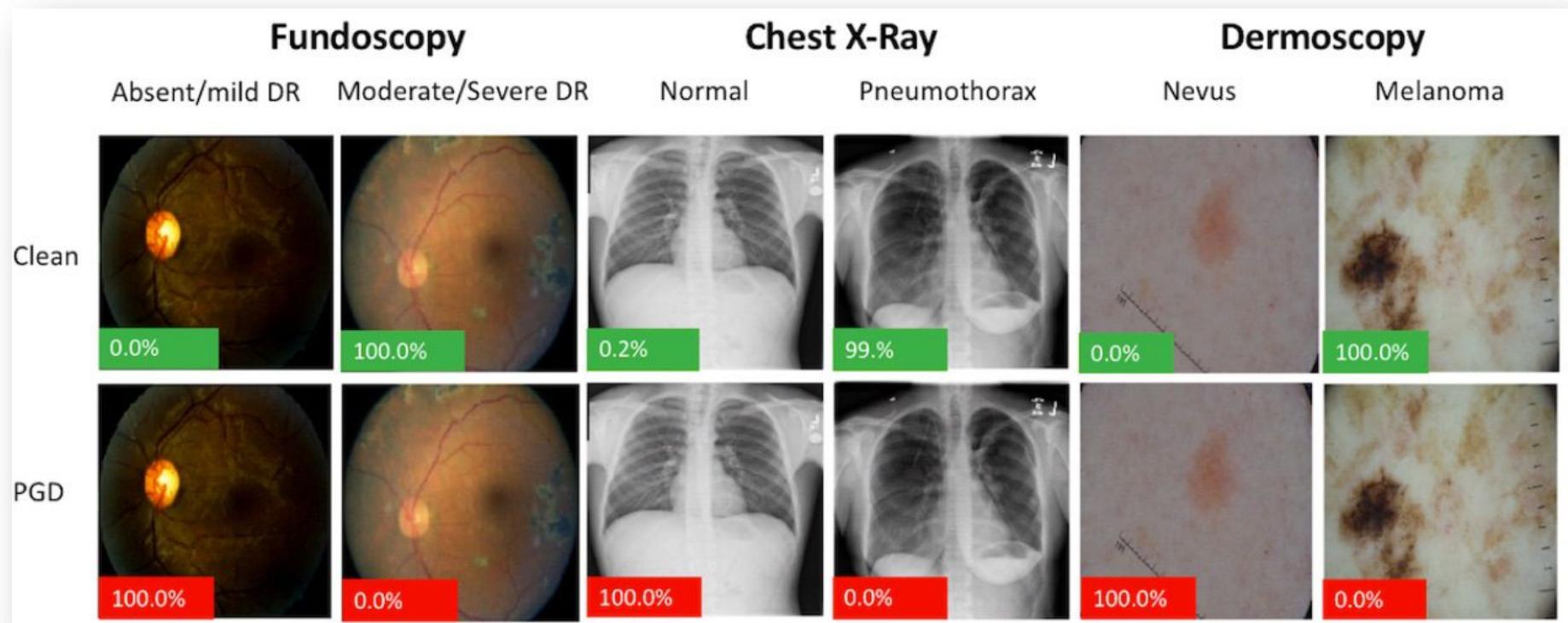




Figure 1: Overview of an adversarial example: The addition of a carefully crafted perturbation converts an image that the model correctly classifies as benign into an image that the network is 100% confident is malignant.

Beyond the AI Hype

By Whitney J. Palmer

July 22, 2019

AHRA, Automation, Technology

Harvard
Business
Review

Coronavirus Magazine Popular Topics Podcasts Video Store The Big Idea

INNOVATION

What AI “App Stores” Will Mean for Radiology

by Woojin Kim and Karen Holzberger

June 17, 2019

<https://www.diagnosticimaging.com/ahra/beyond-ai-hype>

<https://hbr.org/2019/06/what-ai-app-stores-will-mean-for-radiology>

SiIM

LABORATORY OF
MEDICAL IMAGING
AND COMPUTATION

Real-World Performance of Deep-Learning-Based System for Intracranial Hemorrhage Detection

Sehyo Yune, MD MPH MBA

Hyunkwang Lee, Stuart Pomerantz, Javier Romero, Shahmir Kamalian,
Ramon Gonzalez, Michael Lev, Synho Do

Department of Radiology
Massachusetts General Hospital

#CMIMI18

Model Performance Comparison

Sensitivity

98%

Selected test dataset

		Model Prediction			
		ICH (+)	ICH (-)		
Clinical report	Expert confirmation	5	95		
	Expert confirmation	5	95	Sensitivity: 98%	
Real-world test dataset		PPV: 95.1%		NPV: 97.9%	

Real-world test dataset

PPV

95.1%

Clinical report

ICH (+)

142

21

Sensitivity: 87.1%

NPV

ICH (-)

97.9%

PPV: 12.2%

NPV: 98.5%

NPV, negative predictive value; PPV, positive predictive value

Model Performance Comparison

Sensitivity

98%

87.1%

Selected test dataset

		Model Prediction			
		ICH (+)	ICH (-)		
Clinical report	Expert confirmation	5	95	Sensitivity: 98%	
		5	95	Specificity: 95%	
Real-world test dataset		PPV: 95.1%		NPV: 97.9%	

Real-world test dataset

PPV

95.1%

12.2%

Clinical report

NPV

97.9%

		Model Prediction			
		ICH (+)	ICH (-)		
Clinical report	Expert confirmation	142	21	Sensitivity: 87.1%	
		142	21	Specificity: 58.3%	
Real-world test dataset		PPV: 12.2%		NPV: 98.5%	

NPV, negative predictive value; PPV, positive predictive value

#CMIMI18

1-800-MD-SINAI

[Find a Doctor](#)

[Request an Appointment](#)

[Our Locations](#)

[Home](#) > [About Us](#) > [Newsroom](#)

Press Release

Artificial Intelligence May Fall Short When Analyzing Data Across Multiple Health Systems

Study shows deep learning models must be carefully tested across multiple environments before being put into clinical practice.

New York, NY (November 06, 2018) — Artificial intelligence (AI) tools

<https://www.mountsinai.org/about/newsroom/2018/artificial-intelligence-may-fall-short-when-analyzing-data-across-multiple-health-systems>

Design Characteristics of Studies Reporting the Performance of Artificial Intelligence Algorithms for Diagnostic Analysis of Medical Images: Results from Recently Published Papers

Dong Wook Kim, MD^{1*}, Hye Young Jang, MD^{2*}, Kyung Won Kim, MD, PhD², Youngbin Shin, MS², Seong Ho Park, MD, PhD²

¹Department of Radiology, Taean-gun Health Center and County Hospital, Taean-gun, Korea; ²Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea

Only 31 (6%) of the 516 eligible published studies performed external validation of the algorithms, and **none** met the recommended criteria for clinical validation of AI in real-world practice.

Dong Wook Kim, MD^{1*}, Hye Young Jang, MD^{2*}, Kyung Won Kim, MD, PhD², Youngbin Shin, MS²,

Seong Ho Park, MD²

¹Department of Radiology, Taean-gun Health Center and County Hospital, Taean-gun, Korea; ²Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea

Research**Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies**

BMJ 2020 ;368 doi: <https://doi.org/10.1136/bmj.m689> (Published 25 March 2020)

Cite this as: BMJ 2020;368:m689

Linked Editorial

Artificial intelligence versus clinicians

Article

Related content

Metrics

Responses

Peer review

Myura Nagendran , academic clinical fellow¹, Yang Chen, academic clinical fellow², Christopher A Lovejoy, physician³, Anthony C Gordon, professor^{1 4}, Matthieu Komorowski, clinical lecturer⁵, Hugh Harvey, director⁶, Eric J Topol, professor⁷, John P A Ioannidis, professor⁸, Gary S Collins, professor^{9 10}, Mahiben Maruthappu, chief executive officer³

Conclusions: Few prospective deep learning studies and randomised trials exist in medical imaging. **Most non-randomised trials are not prospective, are at high risk of bias, and deviate from existing reporting standards.** Data and code availability are lacking in most studies, and human comparator groups are often small. Future studies should diminish risk of bias, **enhance real world clinical relevance**, improve reporting and transparency, and **appropriately temper conclusions.**

Article ▾ Related content ▾ Metrics ▾ Responses ▾ Peer review ▾

Anthony S DeCicco, professor¹, Michael J Fischl, clinical lecturer¹, Hugh R Harley, director², Eric J Topol, professor³,

John P A Ioannidis, professor⁴, Gary S Collins, professor^{9, 10}, Mahiben Maruthappu, chief executive officer³

[Join Extra Crunch](#)

[Login](#)

[Search Q](#)

[Startups](#)

[Videos](#)

[Audio](#)

[Newsletters](#)

[Extra Crunch](#)

[Advertise](#)

[Events](#)

—

[More](#)

Google medical researchers humbled when AI screening tool falls short in real-life testing

Devin Coldewey [@techcrunch](#) / 2:03 pm PDT • April 27, 2020

[Comment](#)

[Image Credits: Google](#)

<https://techcrunch.com/2020/04/27/google-medical-researchers-humbled-when-ai-screening-tool-falls-short-in-real-life-testing/>

Join Extra Crunch

Login

Search

Start

Video

Audio

News

Extra Crunch

Advertiser

Events

—

More

Google medical researchers humbled when AI screening tool falls short in real-life testing X

If an image has a bit of blur or dark area, for instance, the system will reject it, even if it could make a strong prediction. The system's high standards for image quality is at odds with the consistency and quality of images that the nurses were routinely capturing under the constraints of the clinic, and this mismatch caused **frustration and added work**.

Image Credit: Google

<https://techcrunch.com/2020/04/27/google-medical-researchers-humbled-when-ai-screening-tool-falls-short-in-real-life-testing/>

AI techniques in medical imaging may lead to incorrect diagnoses

Date: May 12, 2020

Source: University of Cambridge

Summary: Machine learning and AI are highly unstable in medical image reconstruction, and may lead to false positives and false negatives, a new study suggests.

G

"We found that the tiniest corruption, such as may be caused by a patient moving, can give a very different result if you're using AI and deep learning to reconstruct medical images -- meaning that these algorithms lack the stability they need."

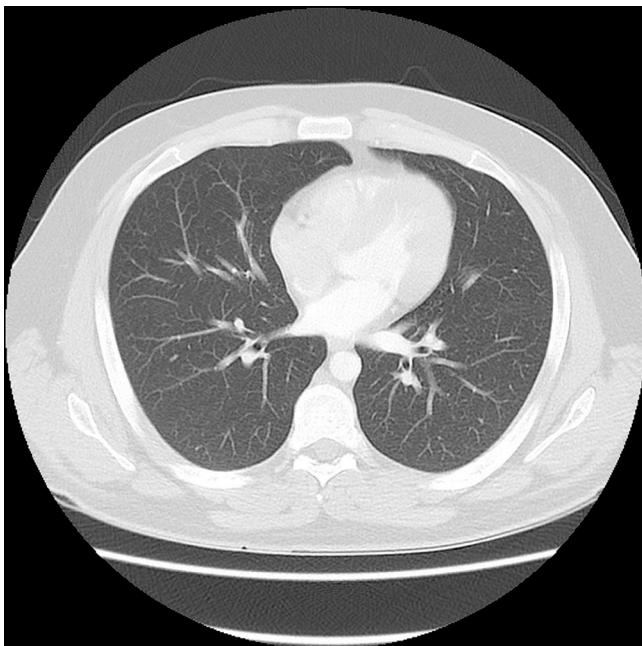
Background photo created by mindandi - www.freepik.com

DATA SCIENCE INSTITUTE®
AMERICAN COLLEGE OF RADIOLOGY

Icons made by Freepik from www.flaticon.com

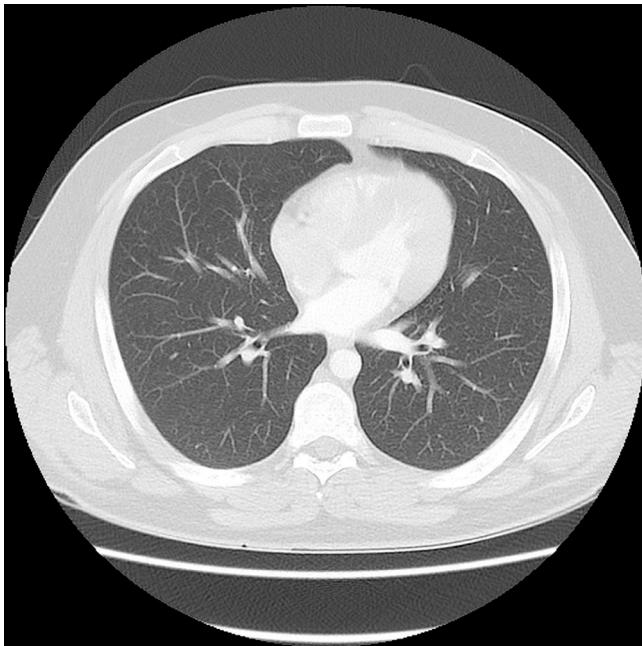
How Secure Is Your Radiology Department? Mapping Digital Radiology Adoption and Security Worldwide

Mark Stites¹
Oleg S. Pianykh^{2,3}

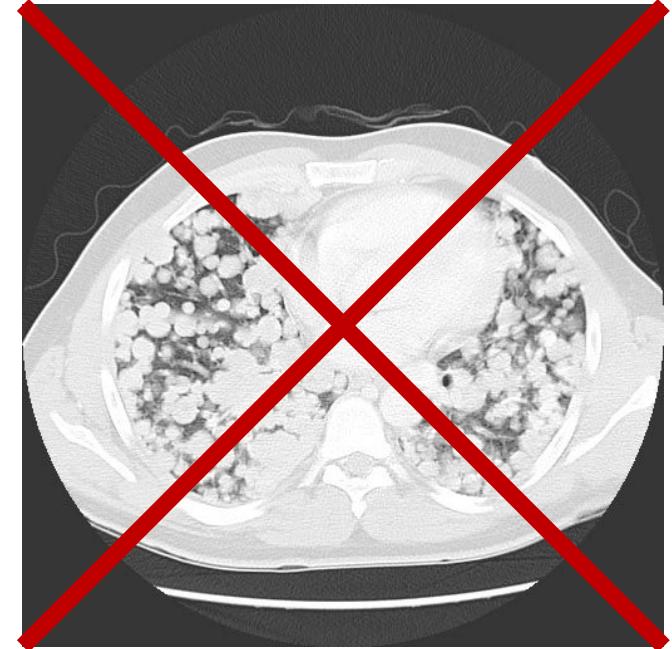

OBJECTIVE. Despite the long history of digital radiology, one of its most critical aspects—information security—still remains extremely underdeveloped and poorly standardized. To study the current state of radiology security, we explored the worldwide security of medical image archives.

MATERIALS AND METHODS. Using the DICOM data-transmitting standard, we implemented a highly parallel application to scan the entire World Wide Web of networked computers and devices, locating open and unprotected radiology servers. We used only legal and radiology-compliant tools. Our security-probing application initiated a standard DICOM handshake to remote computer or device addresses, and then assessed their security posture on the basis of handshake replies.

RESULTS. The scan discovered a total of 2774 unprotected radiology or DICOM servers worldwide. Of those, 719 were fully open to patient data communications. Geolocation was used to analyze and rank our findings according to country utilization. As a result, we built maps and world ranking of clinical security, suggesting that even the most radiology-advanced countries have hospitals with serious security gaps.



DATA SCIENCE INSTITUTE®
AMERICAN COLLEGE OF RADIOLOGY



DATA SCIENCE INSTITUTE®
AMERICAN C

Case courtesy of Dr Andrew Dixon, Radiopaedia.org, rID: 36676
Case courtesy of Radswiki, Radiopaedia.org, rID: 11850
Icons made by Freepik from www.flaticon.com

0ae849d09909df9812612814

0ae721e17542eh1428424519

DATA SCIENCE INSTITUTE®
AMERICAN COLLEGE OF RADIOLOGY

Icons made by Freepik from www.flaticon.com

Image by Free-Photos from Pixabay

This fits 87.2% of the
population without
adjustments.

Photo by Artem Beliaikin from Pexels

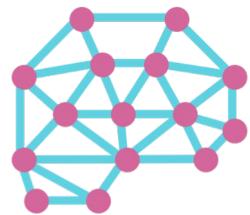


Image by Free-Photos from Pixabay

This fits 93.4% of the
population without
adjustments.

Photo by Artem Beliaikin from Pexels

Icons made by [monkik](#) and [Freepik](#) from [www.flaticon.com](#)

Conclusion

Banner vector created by starline - www.freepik.com

Thank you

woojinrad@gmail.com

@woojinrad

www.linkedin.com/woojinkim

DATA SCIENCE INSTITUTE®
AMERICAN COLLEGE OF RADIOLOGY